This article was downloaded by: On: *25 January 2011* Access details: *Access Details: Free Access* Publisher *Taylor & Francis* Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Journal of Sulfur Chemistry

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713926081

Understanding the effects of sulfur on mercury capture from coal-fired utility flue gases

Eric A. Morris^a; Kazuki Morita^b; Charles Q. Jia^a

^a Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Canada ^b Institute of Industrial Science, University of Tokyo, Tokyo, Japan

Online publication date: 28 September 2010

To cite this Article Morris, Eric A., Morita, Kazuki and Jia, Charles Q.(2010) 'Understanding the effects of sulfur on mercury capture from coal-fired utility flue gases', Journal of Sulfur Chemistry, 31: 5, 457 – 475 To link to this Article: DOI: 10.1080/17415993.2010.493199 URL: http://dx.doi.org/10.1080/17415993.2010.493199

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doese should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Taylor & Francis Taylor & Francis Group

REVIEW ARTICLE

Understanding the effects of sulfur on mercury capture from coal-fired utility flue gases

Eric A. Morris^a, Kazuki Morita^b and Charles Q. Jia^a*

^aDepartment of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Canada; ^bInstitute of Industrial Science, University of Tokyo, Tokyo, Japan

(Received 5 March 2010; final version received 3 May 2010)

Coal combustion continues to be a major source of energy throughout the world and is the leading contributor to anthropogenic mercury emissions. Effective control of these emissions requires a good understanding of how other flue gas constituents such as sulfur dioxide (SO_2) and sulfur trioxide (SO_3) may interfere in the removal process. Most of the current literature suggests that SO_2 hinders elemental mercury (Hg⁰) oxidation by scavenging oxidizing species such as chlorine (Cl₂) and reduces the overall efficiency of mercury capture, while there is evidence to suggest that SO2 with oxygen (O2) enhances Hg0 oxidation by promoting Cl₂ formation below 100 °C. However, studies in which SO₂ was shown to have a positive correlation with Hg⁰ oxidation in full-scale utilities indicate that these interactions may be heavily dependent on operating conditions, particularly chlorine content of the coal and temperature. While bench-scale studies explicitly targeting SO3 are scarce, the general consensus among full-scale coal-fired utilities is that its presence in flue gas has a strong negative correlation with mercury capture efficiency. The exact reason behind this observed correlation is not completely clear, however. While SO₃ is an inevitable product of SO₂ oxidation by O_2 , a reaction that hinders Hg^0 oxidation, it readily reacts with water vapor, forms sulfuric acid (H₂SO₄) at the surface of carbon, and physically blocks active sites of carbon. On the other hand, H_2SO_4 on carbon surfaces may increase mercury capacity either through the creation of oxidation sites on the carbon surface or through a direct reaction of mercury with the acid. However, neither of these beneficial impacts is expected to be of practical significance for an activated carbon injection system in a real coal-fired utility flue gas.

Keywords: sulfur dioxide; sulfur trioxide; mercury capture; coal-fired power plant; activated carbon

1. Introduction

1.1. Motivation

It is widely known that mercury in the environment can have severe consequences for both wildlife and human health. Metallic mercury, after being converted to methyl mercury by aquatic micro-organisms, is bioconcentrated and accumulates as it moves up the food chain. In the 1950s, this resulted in tragic consequences in Minimata, Japan, where several hundred people died and debilitating birth defects occurred (1, 2). The presence of methyl mercury in aquatic ecosystems

ISSN 1741-5993 print/ISSN 1741-6000 online © 2010 Taylor & Francis DOI: 10.1080/17415993.2010.493199 http://www.informaworld.com

^{*}Corresponding author. Email: cq.jia@utoronto.ca

is also thought to carry potential risks to wildlife, in particular to those species at higher tropic levels such as large fish and piscivorous birds and mammals (3).

Estimates of the percentage of atmospheric mercury emissions that originate from anthropogenic sources range from 59% (4) to 70% (5). The primary source, which has consistently contributed over 60% of anthropogenic mercury emissions worldwide, is stationary fossil fuel combustion, particularly that of coal (6, 7). Numerous studies have demonstrated the ability of anthropogenic mercury to be transported via meteorological patterns over long distances on subcontinental (8–11) and inter-continental (12, 13) scales. Findings such as these, coupled with the potential for biomagnification, have led most jurisdictions to place strict regulations and reduction targets on mercury emissions.

In 2005, the US Environmental Protection Agency introduced the Clean Air Mercury Rule (CAMR), a cap-and-trade system which set a limit on mercury emissions from coal-fired power plants across the USA of 38 tons by 2010 and 23 tons by 2018 (14). Mercury from US coal combustion was estimated to be 51.3 tons in 2005, so this represents an overall reduction of 55% in 13 years (15). Numerous states chose not to participate in CAMR, opting instead to implement more stringent policies that will require up to 95% reductions in the short term (16). Similarly, Canada-Wide Standards were introduced in 2006 in which a 60% overall reduction was required by 2010 and 80% by 2018 (17). Individual provinces proposed their own mercury emissions caps for coal-fired power generation based on regional factors such as plant configurations, power supply issues, provincial policy commitments, and the range of coals used across the country. Alberta, which is Canada's largest emitter of atmospheric mercury from coal combustion, is expected to achieve at least 50% reduction by the end of 2010 and will require proposals from individual utilities in 2013 to reduce emissions by 80% (18). Similar strategies have been implemented in Europe, most notably European Directive 96/61/CE (19), although there are still no legal limits on atmospheric emissions of mercury from power plants in certain jurisdictions such as Poland (20).

1.2. Importance of SO_2 and SO_3 for mercury capture in coal-fired utilities

During the combustion of coal, SO_2 and SO_3 will be formed as products of sulfur oxidation reactions. Depending on the sulfur content of the coal, SO_2 concentrations in the flue gas may exceed 1000 ppm, while SO_3 may be present in amounts ranging from a few to more than 40 ppm. A small percent of SO_2 will be oxidized to SO_3 in the boiler, and more may be oxidized downstream due to the presence of reactive sites on fly ash (21). There is also considerable evidence to suggest that sulfur in SO_2 is oxidized to S(VI) on carbon surfaces (22–24), which may result in additional gaseous SO_3 when activated carbon is injected for mercury control. In addition, many coal-fired power plants intentionally add SO_3 to condition the flue gas for more effective removal of fly ash using electrostatic precipitators (25, 26).

Among coal-fired utilities, the consensus in recent years has been that SO₃ in flue gas is a serious detriment to the efficacy of mercury removal via activated carbon injection (25, 27). Potential mechanisms for the inhibition of mercury adsorption by both SO₂ and SO₃, including competitive adsorption, scavenging of surface oxygen or halogens, and the formation of H₂SO₄ with concomitant blocking of pores, have been suggested by Granite and coworker (28, 29). Yet, an industrial process (Outokumpu Process) was developed in the 1970s for capturing mercury species in non-ferrous smelter flue gases using 80–90% H₂SO₄ at 150–200 °C (*30*). While converting Hg species into HgSO₄, this process also captures other metal species present in the flue gas. Although concentrated H₂SO₄ is a known oxidizer at elevated temperatures, these metal species may make the mechanism of mercury capture more complicated. More recently, a patented technique for removing Hg from liquid hydrocarbons was developed based on activated carbon impregnated with H₂SO₄, HCl, or H₃PO₄ (*31*). Previous authors took note of these industrial applications (*28, 29*), but reasons for the difference between these cases and that of coal-combustion

flue gas are still unknown. Furthermore, there have been recent studies indicating that H_2SO_4 has a positive impact on mercury capacity (32, 33). We attempt to resolve this question on the apparent discrepancy for H_2SO_4 promotion or poisoning of activated carbon surfaces later in this paper.

When activated carbon injection is not used, SO_2 and SO_3 may still have significant effects on mercury capture. Many utilities rely on catalytic oxidation of Hg^0 to Hg^{2+} , followed by capture of the oxidized mercury using wet scrubbers. At temperatures exceeding 350 °C, SO_2 is known to hinder Hg^0 oxidation. This may occur through the inhibition of other oxidizing species or through competition for the same catalytic surface sites as Hg^0 , whereupon SO_2 is oxidized to SO_3 (34).

This report seeks to summarize and clarify the impacts of sulfur species on the capture of mercury from coal combustion flue gases by reviewing the relevant literature. The focus will be on their effects on the two most widely researched methods of mercury removal: (1) Hg^0 oxidation, either in the gas phase or on solid surfaces, followed by Hg^{2+} absorption by wet scrubbers, and (2) Hg^0 removal via adsorption onto activated carbon materials. Other techniques such as adsorption to fly ash and zeolites have been the focus of much research; however, these are not as commonly used in industry.

2. Impacts of SO₂ and SO₃ on mercury oxidation state

2.1. Homogeneous oxidation of mercury

From the perspective of simplifying mercury removal, gas-phase interactions which affect the oxidation state of mercury in flue gas are quite important. Being more water-soluble, oxidized mercury compounds can efficiently be removed using existing flue gas desulfurization (FGD) equipment, typically wet scrubbers. For this reason, many researchers have looked at homogeneous reaction mechanisms of mercury in flue gas with the goal of maximizing the proportion of oxidized to elemental mercury. The findings discussed here are summarized in Table 1.

The effect of SO₂ on homogeneous oxidation of Hg⁰ has been observed to be negligible at temperatures ranging from 20 to 900 °C (*35*). For this reason, studies tend to focus on the effect of SO₂ on other oxidizing species that may be present in typical coal combustion exhausts. Of these, Cl₂ is generally believed to have the greatest potential for oxidizing Hg⁰ to Hg²⁺. The main source of Cl₂ in flue gas is thought to be through gas-phase reaction of HCl, as per the Deacon reaction:

$$4\text{HCl} + \text{O}_2 \longrightarrow 2\text{H}_2\text{O} + 2\text{Cl}_2. \tag{1}$$

Xie *et al.* (*36*) tested the impact of SO₂ on the Deacon reaction by flowing 250 ppm HCl and 0–1230 ppm SO₂ through a tube furnace at 800 °C in a background gas of N₂ containing 15% CO₂, 0.2% CO, 5% O₂, and 5% H₂O. The product gases were trapped in a solution of phenol in methylene chloride, which formed chlorinated phenol when contacted with Cl₂. It was observed that the amount of chlorinated phenol decreased as SO₂ concentration increased, suggesting that molecular chlorine is rapidly consumed by the following reaction:

$$SO_2 + Cl_2 + H_2O \longrightarrow SO_3 + 2HCl.$$
 (2)

The feasibility of this reaction is supported by prior pilot-scale studies that looked into reducing emissions of polychlorinated dioxins and furans from municipal waste incinerators by mixing in sulfur-containing coals (*37*, *38*). Co-combustion of coal produced SO₂, which was found to dramatically reduce dioxin and furan generation.

Sterling *et al.* (39) added Cl₂, HCl, and SO₂ to a methane combustion gas to simulate the radical pool of a coal flame exhaust. Adding SO₂ at 100 and 400 ppm in the presence of 100 ppm HCl had negligible effect on oxidation of Hg⁰. In contrast, addition of 100 and 400 ppm SO₂ to

Reference °C Hg (μ g/m ³)		Baseline gases ^a	Variable gases	Key findings	
Hall <i>et al.</i> (35)	20–900	100	Propane combustion gas	115 ppm SO ₂	No effect on homogeneous oxidation of Hg ⁰ by SO ₂
Xie <i>et al.</i> (36)	800	_	15% CO ₂ , 5% O ₂ , 5% H ₂ O, 0.2% CO, 250 ppm HCl	0–1250 ppm SO ₂	Cl ₂ produced by Deacon reaction consumed by SO ₂ and H ₂ O forming HCl and SO ₃
Sterling et al. (39)	350	Unspecified	Methane combustion gas ($\varphi^{d} = 0.9, 1, 0$)	0–300 ppm HCl, 0–500 ppm Cl ₂ , 0–400 ppm SO ₂	Insignificant effect of SO ₂ on Hg oxidation with 100 ppm HCl Strong inhibition of oxidation due to SO ₂
Zhao <i>et al.</i> (41)	750–480	12 ^b	Pure N ₂ , 13 ppm Cl ₂	0–2000 ppm SO ₂ , 0–8% H ₂ O	Insignificant decrease in Hg oxidation with Cl ₂ , slight increase in HgCl ₂ reduction due to SO ₂ H ₂ O with SO ₂ reduced Hg oxidation with Cl ₂ by 35%, increased HgCl ₂ reduction by 35%
A computed at $al(42)$	520 177	10	12.5% CO 2.5% O 2 mm Cl	0.270 mm 50 0.120/ 11.0	SO_2 and H_2O consume Cl and Cl_2
Agarwai <i>et at.</i> (42)	556-177	10	15.5% CO ₂ , 5.5% O ₂ , 2 ppm Ci ₂	0–570 ppm SO ₂ , 0–15% H ₂ O	Slight increase in inhibition due to addition of H ₂ O with SO ₂
Zhou <i>et al.</i> (40)	400-800	10.5	13% CO ₂ , 800 ppm NO	4–7% O ₂ , 0–1200 ppm SO ₂ , 0–60 ppm HCl	Without HCl, SO ₂ enhanced Hg oxidation
					With HCl, Hg oxidation was inhibited SO ₂ may consume Cl reaction intermediates
Krishnakumar and Helble (43)	350	_	Methane combustion gas ($\phi^{d} = 0.9$), 150 ppm HCl, 130 ppm NO	0–100 ppm SO ₂	SO ₂ inhibits Hg oxidation by Cl through scavenging of OH radicals ^c
Ko et al. (45)	90	45	10% O ₂ , 3% H ₂ O, 105 ppm NO, 80 ppm HCl	0–200 ppm SO ₂	SO ₂ inhibits Cl species by scavenging of OH radicals formed by pulsed corona discharge

Table 1.	Summary: effects of SO	on homogeneous mercury	oxidation in combustion gases.

Notes: ^aBalanced with N₂, unless otherwise noted. ^bHg⁰ and HgCl₂. ^cSimulation results. ^d φ , equivalence ratio.

500 ppm Cl₂ inhibited oxidation by approximately 40% and 50%, respectively. Zhou *et al.* (40) obtained similar results in which addition of 1200 ppm SO₂ to a simulated flue gas containing 60 ppm HCl reduced Hg oxidation by roughly 10–30% between 400 °C and 800 °C. When HCl was not present, however, increasing SO₂ from 0 to 400 ppm resulted in an increase in Hg oxidation of a similar magnitude. The authors postulated that this might be the result of SO₂ scavenging Cl reaction intermediates in a manner similar to that shown in reaction (2).

Zhao *et al.* (41) investigated the impacts of SO₂, NO, and Cl₂ on Hg⁰ oxidation and HgCl₂ reduction using a horizontal reactor where the temperature varied from 750 °C to 480 °C from inlet to outlet. It was observed that adding 2000 ppm SO₂ to a baseline concentration of 13 ppm Cl₂ had no significant effect. However, when 8% H₂O was added along with the 2000 ppm SO₂, Hg⁰ oxidation dropped from more than 40% to ~5% across the reactor. Similarly, the same concentrations of SO₂ and H₂O were found to increase HgCl₂ reduction from ~45% to 80% while SO₂ on its own caused a slight decrease. The authors attributed this behavior to SO₂ and H₂O scavenging Cl and Cl₂ according to reactions (2) and (3).

$$Cl + SO_2 + H_2O \longrightarrow HCl + HOSO_2.$$
 (3)

Results obtained by Agarwal *et al.* (42) disagree somewhat. By adding 370 ppm SO₂ to a simulated flue gas containing 3.5% O₂, 13.5% CO₂, 2 ppm Cl₂, and $10 \,\mu$ g/m³ elemental mercury, a decrease in mercury oxidation from over 70% to 52% was observed. Furthermore, the addition of 13% H₂O did strengthen the inhibitory effect of SO₂, but only very slightly.

A somewhat different explanation for observed inhibition of mercury oxidation due to SO₂ was supported by Krishnakumar and Helble (43) based on the oxidation mechanism proposed by Qiu *et al.* (44). The observed results of Sterling *et al.* (39) were found to correlate quite well with those found using the Qiu mechanism under the same experimental conditions. A sensitivity analysis was thus performed using this mechanism, and it was suggested that SO₂ inhibits Hg⁰ oxidation through scavenging of OH radicals as opposed to Cl species.

$$HCl + OH \longrightarrow Cl + H_2O$$
 (4)

$$HOSO_2 + O_2 \longrightarrow HO_2 + SO_3 \tag{5}$$

$$\mathrm{HO}_2 + \mathrm{OH} \longrightarrow \mathrm{H}_2\mathrm{O} + \mathrm{O}_2. \tag{6}$$

The reaction of HCl with OH, which was determined to be the main pathway for producing Cl atoms, is thus blocked by the addition of SO_2 . Lower levels of Cl in the flue gas would result in lower levels of Hg⁰ oxidation. Evidence in support of this conclusion has been observed by Ko *et al.* (45).

No literature could be found describing experiments in which the effect of SO_3 on homogeneous mercury oxidation was studied. It has been speculated, though, that SO_3 may enhance photochemical oxidation of elemental mercury that has been promoted to an excited state by the application of 253 nm ultraviolet light according to reaction (7) (46):

$$Hg^{0} + hv \longrightarrow Hg^{*} + SO_{3} \longrightarrow HgO + SO_{2}.$$
 (7)

In this reaction, Hg^{*} is elemental mercury in the $6({}^{3}P_{1})$ excited state. The validity of this reaction needs to be confirmed through experiments.

The overall body of work pertaining to the effect of SO_2 on homogeneous mercury oxidation seems to suggest that it indirectly inhibits the conversion of Hg^0 to Hg^{2+} . Although SO_2 on its own appears to have little effect in the gas phase, its interactions with oxidizing species such as Cl_2 reduces their availability to react with mercury. In order to understand the situation in a real coal combustion flue gas, however, it is important to incorporate these findings with those of heterogeneous systems.

2.2. Heterogeneous oxidation of mercury

Heterogeneous oxidation is loosely defined as oxidation in the presence of a solid material such as fly ash. Due to the presence of fly ash in coal combustion flue gas, the effects of sulfur species on heterogeneous oxidation of mercury may be different from that in a homogeneous system. The change in mercury speciation will affect its removal in the existing equipment such as FGD, as previously mentioned. Findings extracted from the literature are summarized in Table 2.

Zacharewski *et al.* (47) used Fourier transform infrared spectroscopy to investigate the reaction of solid mercuric oxide (HgO) with SO_2 at room temperature. Over a period of weeks, absorption spectra indicating the existence of Hg_2SO_4 and $HgSO_4$ were observed. The following reactions were proposed to explain the findings:

$$HgO(s) + SO_2(g) \longrightarrow Hg^0(g) + SO_3(g)$$
(8)

$$2\text{HgO}(s) + \text{SO}_2(g) \longrightarrow \text{Hg}_2\text{SO}_4(s) \tag{9}$$

$$HgO(s) + SO_3(g) \longrightarrow HgSO_4(s).$$
⁽¹⁰⁾

These reactions suggest a direct participation of SO_2 in the reduction of Hg^{2+} to Hg^0 . Although the reaction rate was exceedingly slow, it is conceivable that these reactions may proceed at a more significant rate on the surfaces of solid particles such as fly ash or activated carbon at the elevated temperatures associated with coal-fired utility stack gases. Apparently, the authors did not consider the possibility of Hg^+ forming through reaction between Hg^{2+} and Hg^0 ; therefore, reaction (9) may be questionable.

Using the Ontario Hydro Method, Laudal et al. (48) investigated the impact of 1500 ppm SO₂, 50 ppm HCl, and 10 ppm Cl₂ on the oxidation of Hg⁰ at 20 µg/m³. Tests were performed in N₂ containing 15% CO₂, 4% O₂, and 10% H₂O with and without the gas mixture flowing through a bed of coal fly ash. Results indicated that, without fly ash, SO₂ greatly reduced the ability of Cl₂ to oxidize Hg^0 , reducing the proportion of oxidized mercury in the outlet from 84.8% to 1.9%. The addition of fly ash, however, increased the oxidized mercury to 28.5%, confirming its involvement in Hg^0 oxidation. Fly ash is rich in silica (SiO₂), lime (CaO), and unburnt carbon, all of which may participate in catalyzing the oxidation of mercury. The alkaline minerals that are present may also help to neutralize acid gases such as SO2, which reduces oxidized mercury, and SO3, which may combine with H₂O to form H₂SO₄ on the ash surface and physically hinder further oxidation (25, 26). HCl (without Cl_2) was not observed to have any significant impact on Hg^0 oxidation, with and without fly ash. Although HCl is not an oxidizer for Hg⁰, it is believed to be the source of Cl₂ according to the Deacon reaction. Apparently, under the conditions studied, this reaction did not proceed in any substantial way. In a follow-up study under similar conditions but without Cl₂ in the input stream, the effect of NO_x on mercury oxidation was investigated (49). While SO_2 on its own with fly ash was not observed to produce any oxidized mercury, its combination with 20 ppm NO₂ was found to increase Hg^{2+} to 24%. A very similar enhancement was observed when both HCl and NO₂ were added, suggesting that the overall impact of NO₂ in mercury oxidation in the presence of fly ash is greater than that of Cl resulting from HCl via the Deacon reaction. NO at 300 ppm was found to reduce oxidation under all gas combinations studied.

After studying the data collected from a 100 MW coal-fired boiler, Kellie *et al.* (50) reported a statistically significant positive relationship between SO₂ concentration in the flue gas and the level of oxidized mercury. The observed enhancing effect of SO₂ was justified with the mechanism described by Frandsen *et al.* (51):

$$HgCl_2 + SO_2 + O_2 \longleftrightarrow HgSO_4 + Cl_2.$$
(11)

With this reaction, Frandsen *et al.* indicated that $HgSO_4$ is more stable than $HgCl_2$ in an equilibrium system containing the elements C, H, N, O, S, and Cl in addition to Hg, but only at

Reference	Surface	°C	Hg, μ g/m ³	Baseline gases ^a	Variable gases	Key findings
Zacharewski et al. (47)	HgO(s)	25	-	SO ₂	-	Hg ₂ SO ₄ and HgSO ₄ observed after weeks of reaction
Laudal et al. (48)	Fly ash	175	20	15% CO ₂ , 4% O ₂ , 10% H ₂ O	0–1500 ppm SO ₂ , 0–50 ppm HCl, 0–10 ppm Cl ₂	SO ₂ reduced Hg ⁰ oxidation by Cl ₂ from 85% to 2% or 29% with fly ash HCl has a negligible effect on Hg oxidation
Norton et al. (49)	Fly ash	180	12	12% CO ₂ , 6% O ₂ , 10% H ₂ O, 100 ppm CO	0–1600 ppm SO ₂ , 0–50 ppm HCl, 0–300 ppm NO, 0–20 ppm NO ₂	NO ₂ added to SO ₂ increased Hg oxidation from 0% to 24%
						Adding HCl to NO ₂ +O ₂ increased Hg oxidation to 29% NO always detrimental
Kellie et al. (50)	Fly ash	Unspecified	Unspecified	11.9–16.3% CO ₂ , 3.7–7.1% O ₂ , HCl, 221–384 ppm NO ^b	481–1328 ppm SO ₂ , 66–359 ppm	Both S in coal and SO ₂ concentration have positive correlation with Hg oxidation
Cao <i>et al.</i> (52)	Fly ash	365-155	9–24	11.1–13.7% CO ₂ , 6.2–7.3% O ₂ , HCl, 204–328 ppm NO ^b	569–1165 ppm SO ₂ , 66–298 ppm	Hg oxidation increased by Cl in coal, mitigated by SO ₂
Zhuang <i>et al.</i> (57)	SCR	343	13	12% CO ₂ , 6% O ₂ , 8% H ₂ O, 600 ppm NO, 18.5 ppm NO ₂ , 550 ppm NH ₃	0–2000 ppm SO ₂ , 0–50 ppm SO ₃ , 0–50 ppm HCl	SO ₂ and SO ₃ reduced Hg oxidation by HCl from 71% to 64% and 45%, respectively
						Effect of SO ₃ masked by that of SO_2 when both added with HCl
Yang <i>et al.</i> (53)	Fly ash	Unspecified	0–1.6	Unspecified ^b	Unspecified ^b	Negative correlation between S in coal and Hg oxidation
Wang <i>et al.</i> (54)	Fly ash	Unspecified	1–32	Unspecified ^b	Unspecified ^b	Positive correlation between SO ₂ concentration and Hg oxidation

Table 2. Summary: effects of SO₂ and SO₃ on heterogeneous mercury oxidation in coal combustion gases.

Notes: a Balanced with N2, unless otherwise stated. b Variable gas composition due to different coals tested at different locations in boiler or different plants.

temperatures below ~100 °C. This is considerably lower than temperatures normally encountered in coal combustion flue gases. Nonetheless, this reaction suggests that, under certain conditions, SO₂ along with O₂ may liberate Cl₂, which is a known oxidant for Hg⁰. In contrast to Kellie *et al.*, Cao *et al.* (52) suggested an opposite trend while studying the same 100 MW boiler (Figure 3(b) in (52)). However, a closer inspection of the data revealed that the trend was based on a rather weak correlation that was greatly influenced by a single point at the highest SO₂ concentration (~ 1250 ppm). It should be pointed out that with O₂ the role of SO₂ in Hg⁰ oxidation is very different from that without O₂. It is anticipated that the conversion of HgCl₂ to HgSO₄ according to reaction (11) also depends on the level of O₂.

Yang *et al.* (53) analyzed the coal combustion gases from a 220 MW power plant in China using the Ontario Hydro Method and observed a negative correlation between sulfur content of coal (which is typically indicative of SO_2 and SO_3 levels in the stack gas) and Hg oxidation. In contrast, Wang *et al.* (54) used the same technique to sample flue gases from five Chinese coal-fired power stations and observed a positive correlation between SO_2 concentration and Hg oxidation. The conflicting evidence seems to underscore the complicated nature of the effect of sulfur on Hg⁰ oxidation and the involvement of other active species such as Cl₂ and NO₂. It should also be noted that mercury speciation in coal-fired power plants is not a simple task that is carried out readily or routinely.

Many coal-fired utilities utilize vanadium-based selective catalytic reduction (SCR) devices in order to reduce NO_x emissions. These catalysts have been shown to promote oxidation of Hg^0 to Hg^{2+} , and thus provide an attractive means of reducing mercury emissions when combined with FGD (*34*, *55*, *56*). However, the NH₃ injected as a reducing agent may reduce a portion of the oxidized mercury, and vanadium catalysts also promote oxidation of SO₂ to SO₃ with possible undesired effects (25). Zhuang *et al.* (*57*) studied the impacts of adding HCl at 50 ppm, SO₂ at 2000 ppm, and SO₃ at 50 ppm on the oxidation of 13 μ g/m³ Hg⁰ across an SCR catalyst at 343 °C under 6% O₂, 12% CO₂, 8% H₂O, 600 ppm NO, 18.5 ppm NO₂, and 550 ppm NH₃. Adding SO₂ in addition to HCl was found to reduce oxidation from 71% to 64%. When both SO₂ and SO₃ were added, oxidation dropped only to 63%, suggesting competition between the sulfur species over catalytic sites. Since SO₃ cannot reduce oxidized mercury, its negative impact on Hg⁰ oxidation is likely an indirect effect on the catalyst.

Several other catalyst materials have been tested at the bench-scale for their ability to oxidize Hg^0 in flue gas conditions, including gold, palladium, platinum, iridium, and carbon-based catalysts (58–60). Although these materials displayed great promise for future industrial application, it was suggested that SO₂ could scavenge oxygen or chlorine from the catalyst surface and that this could have an impact on the rate of mercury oxidation. A similar concern has been raised for titania-based catalysts that may be used in conjuction with photocatalytic oxidation of Hg^0 (61).

2.3. Mercury capture using wet FGD scrubbers

It is well understood that once oxidized to a readily soluble form such as HgCl₂, mercury from coal combustion gases can be efficiently captured using wet FGD scrubbers. However, the presence of SO₂ may yet impact the overall effectiveness of these devices. In order to explain observed increases in Hg⁰ across wet FGDs, Chang and Ghorishi (62) proposed a model by which absorbed mercury in the form of HgCl₂ interacts with sulfite or bisulfite in the scrubbing solution to form Hg–S(IV) complexes. A fraction of these complexes then undergo a series of chain reactions to ultimately produce insoluble Hg⁰:

Evidence to support this model was observed by Díaz-Somoano *et al.* (19) using a CaO slurry at 50–60 °C with a background gas consisting of 6% O₂, 7% H₂O, and 50 μ g/m³ Hg (the Hg⁰:Hg²⁺ ratio was undetermined). As SO₂ concentration increased from 250 to 2000 ppm, a near-linear decrease in mercury removal from ~60% to 30% was found. This observation is consistent with the well-documented reducing nature of SO₂ or S(IV) in general.

3. Effect of SO₂ and SO₃ on uptake of mercury using activated carbons

3.1. Chemical interactions of SO_2 and Hg with carbon surfaces

3.1.1. Chemisorption of SO_2 and formation of H_2SO_4

From the perspective of mercury uptake to activated carbons, the interaction of SO_2 with the carbon surface and its potential for forming H_2SO_4 is highly relevant. As mentioned above, H_2SO_4 has found practical use with regards to capture of mercury (30, 31). However, H_2SO_4 is widely regarded as a poison to both Hg^0 oxidation and retention via activated carbons.

In studying the enthalpy of adsorption of SO₂ on the surface of a graphitized carbon black, Beebe and Dell (63) found that removal of surface oxygen complexes resulted in a sharp decrease in the amount of sulfur dioxide adsorbed at 0 °C. Davini (64) came to a similar conclusion, finding that oxygen-containing surface basic groups enhanced SO₂ chemisorption at 25 °C. Other authors have found contradictory results, however, when the carrier gas used contained O₂ and H₂O. Using activated carbon fibers, Daley *et al.* (65) found that the presence of oxygen functional groups decreased SO₂ adsorption capacity from a gas mixture containing 5% O₂, 7% H₂O, and 2500 ppm SO₂. Under the same gas conditions, Lizzio and DeBarr (66) obtained similar results using Illinois coal char. These results were explained in terms of a decrease in both pore volume and available surface sites for SO₂ adsorption due to the presence of oxygen surface complexes. The authors thus proposed the following adsorption mechanism:

$$SO_2$$
 adsorption: $SO_2 + C \longrightarrow C-SO_2$ (13)

$$SO_2$$
 oxidation: $C-SO_2 + O_2 + C \longrightarrow C-SO_3 + C-O$ (14)

$$H_2O$$
 adsorption: $C + H_2O \longrightarrow C - H_2O$ (15)

$$H_2SO_4 \text{ formation: } C-SO_3 + C-H_2O \longrightarrow C-H_2SO_4 + C.$$
(16)

This mechanism suggests that adsorbed SO₂ is primarily oxidized by vapor-phase oxygen, as opposed to chemisorbed oxygen as is normally assumed. Corroborating evidence has been found with 5% O₂ and 10% H₂O using activated carbon fibers at 100 °C and 1000 ppm SO₂ (22), at 100 °C and 3000 ppm SO₂ (23), and at 25 °C with 1000 ppm SO₂ (24). These findings indicate that free O₂ plays a more important role than adsorbed oxygen in oxidizing SO₂ to SO₃ on the carbon surface. However, oxygen surface complexes likely play a minor role as suggested by the results of Beebe and Dell (*63*) and Davini (*64*).

Using molecular modeling software, Yang and Yang (67) determined that the only viable route in which H_2SO_4 can be formed from SO₂ on an oxygen-free graphite surface is through a H_2SO_3 precursor. This implies that the order of the oxidation and hydration steps in the mechanism shown above is reversed, with H_2SO_3 being the intermediate as opposed to SO₃. In addition, the authors found that surface oxygen sites can enhance SO₂ adsorption, but only when the oxides are not present on neighboring sites (*i.e.* when the surface is only sparsely covered with oxygen functional groups). This supports the previous mentioned results in which a decrease in SO₂ capacity with increased surface oxygen was observed in the presence of O₂ and H₂O (22–24, 65, 66).

3.1.2. Oxidation of Hg on carbon surfaces

Activated carbons are widely used for the removal of both Hg^0 and Hg^{2+} species from flue gas. The complexity of the carbon surface is thought to enable this relatively indiscriminate adsorptive behavior. Huggins *et al.* (68) performed X-ray absorption fine structure analyses on a variety of carbonaceous sorbents that had been exposed to simulated flue gases containing Hg^0 and/or $HgCl_2$ at temperatures below 200 °C. The resulting spectra in each case gave no indication of elemental Hg existing on the surface, suggesting that the adsorption process is dominated by chemisorption. Elemental mercury adsorption, it was reasoned, must involve a step where Hg^0 is oxidized to Hg^{2+} at the surface by anions of Cl, I, S, or O (other possibilities such as Br were not included in the standard spectra).

A model to explain this behavior has been proposed in which the carbon surface has multiple sites which are necessary for effective mercury binding. First, carbenium ion oxidation sites are formed by reaction of HCl with zigzag edge structures. Hg⁰ is then oxidized by NO₂ or other oxidizing gases at these oxidation sites (69). The oxidized mercury is then bound to similar zigzag structure carbenium ions which act as Lewis basic sites (70). XPS evidence was found suggesting that NO₂ actively oxidizes sulfur in SO₂ to SO₃, which, when combined with H₂O to form H₂SO₄, then deactivates the basic binding sites which are necessary for retention of Hg²⁺ (71, 72).

3.2. Uptake of mercury to virgin activated carbon

All relevant studies on mercury uptake to virgin activated carbon thus far have focused on SO₂, as shown in Table 3. It was shown by Ghorishi and Gullett (73) that SO₂ on its own enhanced an activated carbon's capacity for elemental mercury. Two different commercial activated carbons were tested at 100 °C and 140 °C using $262 \,\mu g/m^3 \, Hg^0$ with and without 1000 ppm SO₂. For one of them, a significant increase in Hg uptake capacity was reported while the other was apparently unaffected by the presence of SO₂. This finding seems to suggest that the effect of SO₂ was not via a homogeneous reaction. The observed difference in SO₂ effect between the two carbons was attributed to different levels of calcium (0.13 wt% versus 1.82 wt%), which the authors proposed may act as a catalyst in the formation of active sulfur sites for mercury capture. This explanation has not been verified by other research, however.

In order to more accurately reflect typical industrial stack conditions, most recent studies have incorporated SO₂, O₂, and H₂O (among other components) in Hg sorption experiments. Using a simulated flue gas composed of 6% O₂, 12% CO₂, 7% H₂O, 50 ppm HCl, and 60- $70 \,\mu g/m^3 Hg^0$ at 135 °C, Carey et al. (74) observed a decrease in Hg capacity from 15 to 4 mg Hg/g sorbent with the addition of 100 ppm SO_2 . Increasing the SO_2 concentration up to 3000 ppm resulted in a slight decrease to 2 mg Hg/g sorbent. Using the same sorbent material, Eswaran et al. (75) tested the effect of 369 ppm SO₂ and 163 ppm NO on Hg sorption under 3.6% O₂, 13.5% CO₂, and 10–16 μ g/m³ Hg⁰ at approximately 50 °C and 92 °C. At the lower temperature, SO₂ and NO were found to dramatically decrease mercury capacity from \sim 200 to 10 mg Hg/g sorbent, in agreement with Carey *et al.* However, this decrease in capacity was not observed at 92 °C. In fact, a 20% increase in initial adsorption rate was found with SO_2 and NO at this temperature, which was thought to be due to increased reactive sites on the carbon surface under these conditions. A similar pronounced increase in Hg adsorption efficiency from 0 to 1000 ppm SO₂ was observed by Yan et al. (76) using IndoGerman[®] activated carbon in a simulated flue gas at 90 °C. The authors attributed this improvement to the formation of H_2SO_4 at the surface according to a mechanism similar to that shown in reactions (13)-(16). Granite and Presto (77) tested two commercial activated carbons derived from coal under pure N₂ and under N₂ containing 16% CO₂, 5% O₂, 2000 ppm SO₂, 500 ppm

Reference	Sorbent	°C	Hg (μ g/m ³)	Baseline gases ^a	Variable gases	Key findings
Ghorishi and Gullett (73)	Norit FGD [®] , PC-100 [®]	100–140	262–237 ^b	Pure N ₂	0–1000 ppm SO ₂	SO ₂ enhanced Hg uptake with FGD, but had no effect with PC-100 Ca in FGD may form active S sites with SO ₂
Carey et al. (74)	Norit FGD [®]	135	60–70, 30–45°	12% CO ₂ , 6% O ₂ , 7% H ₂ O, 50 ppm HCl	0–3000 ppm SO ₂	Large decrease in Hg ⁰ and HgCl ₂ uptake with 100 ppm SO ₂ Slight further decrease from 100 to 3000 ppm
Miller et al. (78)	Norit FGD [®]	107–163	15	12% CO ₂ , 6% O ₂ , 8% H ₂ O	0–1600 ppm SO ₂ , 0–50 ppm HCl, 0–300 ppm NO, 0–20 ppm NO ₂	Slight enhancement with SO ₂
						Adding HCl and NO with SO ₂ greatly improved Hg uptake NO ₂ found to cause rapid oxidation and breakthrough of Hg in all cases
Yan <i>et al</i> . (76)	IndoGerman [®]	90	10	12% CO ₂ , 6% O ₂ , 40% RH	1000 ppm SO ₂	14% improvement in adsorption efficiency with SO ₂
Granite and Presto (77)	FP-AC, Norit FGD [®] , Norit Insul [®]	138, 204	1600 ^b	Pure N ₂	16% CO ₂ , 5% O ₂ , 2000 ppm SO ₂ , 500 ppm NO	Simulated flue gas increased Hg capacity by factor of 7 for FP-AC and FGD at 138 °C and factor of 3 for Insul at 204 °C
Eswaran et al. (75)	Norit FGD [®]	50–92	10–16	13.5% CO ₂ , 3.6% O ₂	0–369 ppm SO ₂ , 0–163 ppm NO	SO ₂ and NO reduce Hg capacity at 50 °C At 92 °C, SO ₂ and NO accelerate adsorption
Mibeck <i>et al.</i> (79)	Lignite-based AC	135	10–15 ^c	12% CO ₂ , 6% O ₂	0–8% H ₂ O, 0–1600 ppm SO ₂ , 0–50 ppm HCl, 0–400 ppm NO, 0–20 ppm NO ₂	$SO_2 + NO_2$ caused rapid break- through, abated by omitting H_2O
					11 2	H_2SO_4 poisons carbon sorbent SO_2 tended to reduce $HgCl_2$ to Hg^0

Table 3. Summary: effect of SO₂ on uptake of mercury on virgin activated carbons.

Notes: ^aBalanced with N₂, unless otherwise noted. ^bProvided in ppb, converted to µg/m³ assuming ideal gas law at operating temperature. ^cHg⁰, HgCl₂.

NO, and $1600 \,\mu g/m^3 \, Hg^0$ at $138 \,^{\circ}$ C. In agreement with the findings of Eswaran *et al.* and Yan *et al.*, both sorbents exhibited approximately an 85% reduction in Hg⁰ capacity under pure N₂. A similar, yet less dramatic result was noted for a third commercial activated carbon at 204 $^{\circ}$ C.

Miller et al. (78) undertook a comprehensive, full-factorial experiment under similar conditions using continuous emission monitoring (CEM) to analyze the individual and combined effects of SO₂, HCl, NO, and NO₂. The CEM used in this study detected only Hg^0 . By passing the outlet gases through a reduction cell containing tin(II) chloride prior to quantification, oxidized mercury species were reduced to Hg⁰. This allowed for the measurement of total Hg, and, by comparison with Hg⁰, oxidized Hg. It was found that the addition of 1600 ppm SO₂ provided a slight enhancement but, nonetheless, resulted in inadequate mercury sorption performance. Addition of 50 ppm HCl and/or 300 ppm NO along with SO₂ provided considerable improvement in mercury uptake kinetics as evidenced by enhanced capture efficiency. On the other hand, adding 20 ppm NO_2 in the presence of SO_2 , even with HCl and/or NO, resulted in a rapid breakthrough accompanied by a complete oxidation of the mercury. An explanation for this finding came in a later study in which uptake of HgCl₂ and Hg⁰ onto a fixed bed of lignite activated carbon was monitored under similar baseline and acid gas conditions at 135 °C (79). Combining SO₂ with NO2 once again resulted in rapid breakthrough and saturation of the activated carbon. However, this was not observed when H_2O was omitted, indicating the formation of H_2SO_4 via NO₂oxidized SO₂, in good agreement with Laumb et al. (71) and Olson et al. (72). Thus, while NO₂ is important for Hg^0 oxidation and retention as per the mechanism described by Olson *et al.* (69, 70), the combination of NO₂, SO₂, and H₂O leads to poisoning of the surface by H₂SO₄. Furthermore, adding SO_2 alone and in combination with NO resulted in reduction of the HgCl₂ to Hg⁰, which could also hinder uptake performance. This effect was counteracted by addition of NO₂ and HCl.

At temperatures typical of coal combustion flue gases, oxidation in the gas phase and on the carbon surface is a critical step in the removal of mercury using activated carbon. However, the formation of H_2SO_4 on a sorbent under oxidizing conditions can hinder mercury uptake by blocking access to pores and by competing for basic sites with oxidized mercury. It is therefore important to address uptake capacity and oxidation kinetics separately when evaluating the performance of a mercury capture system.

3.3. Uptake of mercury to chemically impregnated activated carbon

To improve the efficiency of mercury capture, many activated carbons are treated with chemicals such as S, Cl, Br, or I in order to augment the carbon surface with additional reactive sites. It is to be expected that the effect of SO_2 and SO_3 on mercury uptake will be different when the activated carbon is chemically impregnated. Table 4 summarizes the results discussed here. Liu et al. (80) tested the effects of adding SO_2 with and without the presence of H_2O using Calgon BPL[®] impregnated with elemental sulfur at 140 °C and 55 μ g/m³ Hg⁰. While 1600 ppm SO₂ showed no effect at all, increasing H₂O from 0% to 10% was found to hinder Hg uptake, possibly due to increased mass transfer resistance. The combination of SO₂ with H₂O led to results similar to those of H₂O alone. This was explained by the low SO₂ concentration: if any H₂SO₃ formed on the surface, it would be at a concentration too low to have an effect. Similarly, Yan et al. (76) found there to be no significant effect of varying SO₂ from 0 to 2000 ppm in a simulated flue gas using Waterlink® S-impregnated carbon at 90 °C. Granite et al. (81) tested two commercial activated carbons, one impregnated with elemental iodine and potassium iodide and the other impregnated with elemental sulfur. Although these tests were done in pure argon, they can be compared with a later study in which the same sorbents were analyzed under N2 with 16% CO2, 5% O2, 2000 ppm SO₂, and 500 ppm NO (77). Under pure Ar at 138 °C, the S-impregnated carbon had an adsorption

Reference	Sorbent	°C	Hg ($\mu g/m^3$)	Baseline gases ^a	Variable gases	Key findings
Liu et al. (80)	Calgon BPL [®] w. S	140	55	Pure N ₂	0–10% H ₂ O, 0–1600 ppm SO ₂	No significant effect of SO ₂
Granite et al. (81)	I-AC, S-AC	138–178	3480 ^b	Pure Ar	-	S-promoted carbon: 3.5 mg/g
Olson <i>et al.</i> (82)	Calgon F-400 [®] , Centaur [®]	150	80-86	Pure N ₂	0–21% O ₂ (air)	I-promoted carbon: 4.8 mg/g Dramatic improvement observed upon H ₂ SO ₄ treatment for both carbons
Granite and Presto (77)	I-AC, S-AC	138	1600 ^b	16% CO ₂ , 5% O ₂ , 2000 ppm SO ₂ , 500 ppm NO	-	Improvement more pronounced in air Capacity of S-promoted and I- promoted carbon reduced to 1.6 and 0.2 mg/g, respectively, in simulated flue gas
Werner et al. (32)	Lignite HOK [®] w. S, H_2SO_4	90–120	1000	Pure N ₂	O ₂ , H ₂ O, SO ₂ (unspecified concentrations)	Hg uptake improved over time due to H ₂ SO ₄ formation from O ₂ , H ₂ O, SO ₂ Direct H ₂ SO ₄ impregnation gave
Presto et al. (28, 29)	Norit FGD [®] , Hg-LH [®] , FGD + H ₂ SO ₄	149	9.3	12.5% CO ₂ , 5.3% O ₂ , 50 ppm HCl, 500 ppm NO	0–1.5% H ₂ O, 0–1870 ppm SO ₂ , 0–100 ppm SO ₃	greatest enhancement $SO_2 + H_2O$, SO_3 greatly reduce Hg capture, exacerbated by Br-impregnation Direct H_2SO_4 impregnation effectively eliminates all Hg canacity
Uddin <i>et al.</i> (33)	Coconut shell AC w. SO ₂ , H ₂ SO ₄	60–100	32	10% CO ₂ , 5% O ₂ , 14.7% H ₂ O	0–500 ppm SO ₂	O ₂ , H ₂ O necessary for Hg removal when SO ₂ present SO ₂ - and H ₂ SO ₄ -treated samples showed improved uptake, mitigated by SO ₂ (<i>g</i>)
Sjostrom et al. (26)	Norit Hg-LH [®] , Hg-E26 [®]	Unspecified	Unspecified	Coal combustion gas	5.4–39 ppm SO ₃	Negative correlation between SO ₃ concentration and Hg removal Alkaline-promoted sorbent mitigated negative effect of SO ₃

Table 4. Summary: effect of SO₂ and SO₃ on uptake of mercury using chemically impregnated activated carbons.

Notes: ^aBalanced with N₂, unless otherwise noted. ^bProvided in ppb, converted to µg/m³ assuming ideal gas law at operating temperature.

capacity of 3.5 mg/g. This value was seen to decrease to 1.6 mg/g in the presence of other gases. The case of the I-promoted carbon was more extreme in that the capacity decreased from 4.8 to 0.2 mg/g by using the simulated flue gas as opposed to Ar. It should be noted, however, that the pure Ar test for the I-impregnated sample was performed at a temperature 50 °C higher than that of the simulated flue gas.

As mentioned previously, one of the key concerns with SO_2 and SO_3 in flue gas is the possibility of formation of H_2SO_4 on the carbon surface, which is widely held to be a poison for effective mercury removal. However, a number of studies have produced mixed results concerning the effect of H_2SO_4 . Olson *et al.* (82) added 5% H_2SO_4 to Calgon F-400[®] and Centaur[®], a catalytic carbon containing nitrogenous edge structures, and subsequently dried them at 110 °C. For the catalytic carbon, this treatment was found to increase the 50% breakthrough time from 8 min to 209 and 575 min in pure N₂ and air, respectively. For Calgon F-400[®] in air, the 50% breakthrough time increased from 1 to 171 min due to the acid treatment. The improvement in the air stream implied a chemisorption mechanism; however, a series of experiments were performed in which Hg adsorption improved slightly with decreased temperature. This might suggest that the overall process is controlled by an interfacial step, rather than mass transfer which often has positive temperature dependence.

Werner et al. (32) investigated the effect of different gas mixtures containing SO₂, O₂, and H_2O on uptake of Hg^0 vapor (1000 μ g/m³) at 120 °C using a lignite-based activated carbon impregnated with elemental sulfur to 5% by weight. The best performance was seen when all three gases (SO₂, O₂, and H_2O) were present, resulting in what the authors interpreted as the formation of H₂SO₄ over time along with a relative increase in uptake. This contrasts with the lack of any effect observed under similar conditions by Yan et al. (76) using a Waterlink® Simpregnated carbon; however, different treatment methods and sulfur contents may be the reason for this discrepancy. The same uptake enhancement trend was recorded by Werner et al. (32) when H_2O was not present, which was attributed to residual H_2O on the carbon surface. With SO_2 alone, however, the performance was the worst among the conditions studied. The effect of H_2SO_4 on Hg^0 adsorption was explicitly shown by soaking the virgin activated carbon in 8% H₂SO₄ for 30 s, filtering, and drying at 105 °C for 4 h. This treated sample showed no sign of breakthrough after ~ 16 h of uptake at 90 °C, at which point the elemental sulfur impregnated sample had reached $\sim 8\%$ breakthrough. A similar result was found by Uddin et al. (33) using a coconut shell derived activated carbon with 5% O₂, 10% CO₂, 14.7% H₂O, 0-500 ppm SO₂, and $32 \mu g/m^3 Hg^0$. It was observed that O₂ and H₂O were necessary for Hg⁰ removal in the presence of SO₂. Samples pre-treated with SO₂ or 0.2% H₂SO₄ showed excellent Hg⁰ removal capacity; however, this enhancement was reduced in the presence of SO₂. The authors suggest that this may be due to reduction of oxidized mercury species (such as HgO) via reaction with SO₂. More direct evidence of mercury binding to sulfate species was provided by Hutson et al. (83) for conventional, Br-impregnated, and Cl-impregnated activated carbon using X-ray absorption spectroscopy. In this study, the sulfate was presumed to originate from the 650 ppm SO_2 in the simulated flue gas used while contacting the samples with Hg⁰.

Several studies, on the other hand, have indicated that H_2SO_4 originating from either SO_2 or SO_3 have negative impacts on Hg capture. Using a simulated flue gas containing 5.25% O_2 , 12.5% CO_2 , 0–1.5% H_2O , 500 ppm NO, 50 ppm HCl, 0–1870 ppm SO_2 , 0–100 ppm SO_3 , and 9.3 μ g/m³ Hg at 149 °C, Presto and Granite (28) tested two commercial activated carbons, one of which was bromine-impregnated. In all cases, SO_3 was found to greatly reduce Hg^0 uptake (nearly 80% at 20 ppm), while the addition of moisture was also found to decrease uptake when SO_2 was present rather than SO_3 . The authors attribute these findings to competitive adsorption between Hg^0 and S(VI) species (*i.e.* SO_3 , sulfate, or H_2SO_4), which was supported by XPS data indicating a dominance of sulfate over other sulfur functional groups. This inhibition of Hg^0 capture was more pronounced with the brominated carbon, due to the increase in surface reactivity toward

both mercury and sulfur oxides. The raw activated carbon was also impregnated directly with 95% H₂SO₄ and dried at 110 °C, after which it exhibited effectively zero capacity for Hg⁰. In a companion study using CEM, exposure to SO₃ and H₂SO₄ impregnation were shown to greatly reduce initial mercury removal efficiency in addition to reducing its overall uptake capacity (29). Sjostrom *et al.* (26) carried out a full-scale study of the impact of SO₃ on Hg adsorption from a 630 MW coal-fired power plant using several varieties of activated carbon. Using Norit Darco Hg-LH[®], a commercial brominated carbon, a negative correlation was found between increasing SO₃ concentration and Hg removal, in agreement with Presto and Granite. The negative effect of SO₃ was reduced when using a similar sorbent which had also been treated with alkaline materials to neutralize acid gases.

3.4. Understanding the effect of H_2SO_4 on mercury uptake

Several of the studies described above were performed under conditions in which H_2SO_4 could potentially form, and for some, this was hypothesized to be the reason behind observations of mercury uptake inhibition (28, 29, 79). On the other hand, it has been suggested by several researchers that the formation of H_2SO_4 at the carbon surface was the cause of observed improvements in mercury uptake capacity (32, 76). To make matters more complicated, different studies in which H_2SO_4 was directly impregnated on activated carbon surfaces have given polar opposite results (28, 29, 32, 33, 82).

This apparent contradiction may be explained by understanding the different mercury uptake conditions used in each case. Considering the experiments in which H₂SO₄ was directly impregnated, Presto et al. (28, 29) observed the most negative effects. In this study, 200 mg of sorbent were placed in a cylindrical reactor of 22 mm ID. Assuming a bulk density of 0.5 g/cm³ (typical of activated carbons), this yields a bed height and volume of approximately 1 mm and 0.4 cm³, respectively. Since the gas flow rate used in that study was 8 l/min, the empty bed residence time (EBRT) is estimated to be only 0.003 s. With such a short residence time, mercury capture is most likely limited by the rate of uptake. Using another H₂SO₄-impregnated activated carbon, Werner et al. (32) carried out Hg⁰ uptake experiments using a sorbent bed made up of three to six layers of activated carbon (each approximately 0.5 g) separated by 2 mm layers of quartz wool. With a reactor ID of 30 mm, flow rate of 540 cm³/min, and assuming a bulk density of 0.5 g/cm³, as before, the bed height, bed volume, and EBRT are estimated to be 1.0-2.1 cm, 7.2-14.5 cm³, and 0.8–1.6 s, respectively. As previously described, excellent mercury capacity was observed under these conditions. It is possible that the much longer gas-solid contact time resulted in a system that was not limited by the rate of uptake, consequently allowing the determination of mercury uptake capacity and its dependence on H₂SO₄ impregnation.

Table 5 lists the bench-scale studies done under conditions where H_2SO_4 could conceivably form (H_2O with SO_2 and an oxidant, O_2 and/or NO_2), as well as those in which H_2SO_4 was added directly. The calculated EBRT for each case is shown, along with an indication of the general observed effect of H_2SO_4 on mercury uptake (regardless of whether or not the acid was in fact formed). The study done by Miller *et al.* (78) provided inadequate information regarding bed dimensions, so it was not included. Likewise, Carey *et al.* (74) mixed activated carbon with sand in their study, thereby complicating the comparison. For the remaining studies, it can be seen from Table 5 that positive effects of H_2SO_4 or H_2SO_4 -forming conditions correlate well with higher values of EBRT while negative effects correlate with the lowest EBRTs. Although the EBRT for the study done by Olson *et al.* (82) was relatively low (0.006 s), it must considered that this is a very rough comparison which does not take into account factors such as temperature, particle size, sorbent characteristics, etc. In a full-scale coal-fired power plant where activated carbon injection is used, the gas–solid contact is likely less efficient than that of bench-scale tests using fixed bed

472 E.A. Morris et al.

Reference	Gas flow rate (cm ³ /min)	Fixed bed volume (cm ³)	EBRT (s)	$[H_2SO_4]$ (vol%)	Overall effect of H ₂ SO ₄
Olson et al. (82)	3780	200 ^b	0.006	5.0	Positive
Yan et al. $(76)^{a}$	300	2.1	0.42	N/A	Positive
Werner et al. (32)	540	1.5-3 ^b	0.8 - 1.6	8.0	Positive
Presto et al. (28, 29)	8000	0.4 ^b	0.003	95.0	Negative
Uddin et al. (33)	500	0.5	0.06	0.2	Positive
Mibeck et al. (79) ^a	14100	0.63	0.003	N/A	Negative

Table 5. EBRT and impregnation concentration as indicators of relative impact of H2SO4.^a

Notes: a Direct H2SO4 impregnation not used. b Based on assumed bulk density of 0.5 g/cm3.

adsorbers. Thus, studies in which the EBRT is very short tend to be more realistic from a practical perspective.

Another factor that may affect the role of H_2SO_4 is its amount on the carbon surface. For the cases where H_2SO_4 was directly impregnated, Table 5 also indicates the concentration of the aqueous H_2SO_4 solution used. It is readily seen that positive effects were observed in the experiments where the concentration of H_2SO_4 was low (0.2–8.0%), while that which used a high concentration (95.0%) found detrimental effects. Large amounts of H_2SO_4 on an activated carbon surface may block access to pores, thus eliminating the vast majority of the surface area on which oxidation and binding of mercury may occur. On the other hand, small amounts of H_2SO_4 which do not affect mass transfer of mercury into the inner pores may actually improve the adsorption capacity by creating oxidation sites (69, 70). However, a coal combustion flue gas is at an elevated temperature and contains substantial amounts of moisture, oxidants, SO_2 , and SO_3 . Thus, it is probable that the amount of H_2SO_4 on the carbon surface would rapidly exceed the small amount at which enhanced adsorption could occur. The accumulating H_2SO_4 would first overwhelm the basic binding sites necessary for retention of oxidized mercury, and eventually obstruct the carbon pores.

Overall, the role of H_2SO_4 in mercury adsorption on activated carbon is not yet fully understood. Carefully designed experiments are needed to quantify to kinetics and capacity of mercury adsorption and to clearly elucidate the capture mechanisms.

4. Summary

Most of the current literature suggests that SO_2 hinders Hg^0 oxidation, with and without other condensed phases such as fly ash, by scavenging oxidizing species such as Cl_2 . However, there is evidence to suggest that SO_2 with O_2 enhances Hg^0 oxidation by promoting Cl_2 formation below 100 °C. Any process that inhibits Hg^0 oxidation will likely reduce the efficiency of its capture, since oxidized mercury is much more readily retained on carbon surfaces and in FGD scrubbing solutions. However, studies in which SO_2 was shown to have a positive correlation with Hg^0 oxidation in full-scale utilities indicate that these interactions may be heavily dependent on operating conditions, particularly chlorine content of the coal and temperature.

The general consensus among full-scale coal-fired utilities is that the presence of SO₃ in flue gas has a strong negative correlation with mercury capture efficiency, while bench-scale studies explicitly targeting SO₃ are scarce. What remains unclear is the exact reason behind this observed correlation. SO₃ is the inevitable product of the oxidation of SO₂ by O₂; since SO₂ oxidation is known to inhibit Hg⁰ oxidation, the observed correlations may simply be a consequence of this process rather than direct interaction of mercury with SO₃. For the case of activated carbons, this negative effect has been attributed to the formation of H₂SO₄ at the surface which physically

hinders mercury uptake. On the other hand, H_2SO_4 on carbon surfaces may increase mercury capacity either through creation of oxidation sites or through a direct reaction of mercury with the acid, or both. Oxidation sites are of great importance due to the fact that they convert Hg^0 to Hg^{2+} , which is then captured at basic surface sites. An examination of operating conditions used reveals that the reaction of mercury with the acid, if it indeed occurs, may be too slow to be of practical significance in capturing mercury by activated carbon injection.

Gaseous sulfur oxides in coal-fired utility flue gases interfere with homogeneous and heterogeneous mercury oxidation reactions, alter physical and chemical characteristics of adsorbents, and affect, directly and indirectly, mercury adsorption in a complex manner. To avoid the conflicting and confusing results that are often seen in the literature, mercury uptake capacity and kinetics need to be analyzed separately when evaluating the performance of a mercury capture system. Other components in flue gases, including Cl₂, NO₂, O₂, and fly ash, may also actively participate and/or influence mercury oxidation and its ultimate capture. Their participation can further complicate the roles of sulfur in mercury removal. There seems a need to map out the pathways involving Hg, S, Cl, O, H, and N with/without activated carbon at various temperatures. Given the ongoing importance of coal combustion in meeting the world's energy demands and increasingly stringent mercury emission regulations, there exists much opportunity for research in this field.

Acknowledgement

The authors would like to express sincere gratitude toward the Consortium of Sustainable Materials, a working partnership between the University of Tokyo and the University of Toronto, for financial support.

References

- (1) Langford, N.J.; Ferner, R.E. J. Hum. Hypertens. 1999, 13, 651-656.
- (2) Davidson, P.W.; Myers, G.J.; Weiss, B. Pediatrics 2004, 113, 1023-1029.
- (3) Scheuhammer, A.M.; Meyer, M.W.; Sandheinrich, M.B.; Murray, M.W. Ambio 2007, 36, 12-18.
- (4) Nriagu, J.O. Nature 1989, 338, 47-49.
- (5) Schuster, P.F.; Krabbenhoft, D.P.; Naftz, D.L.; Dewayne Cecil, L.; Olson, M.L.; Dewild, J.F.; Susong, D.D.; Green, J.R.; Abbott, M.L. *Environ. Sci. Technol.* 2002, *36*, 2303–2310.
- (6) Pacyna, E.G.; Pacyna, J.M. Water Air Soil Pollut. 2002, 137, 149–165.
- (7) Pacyna, E.G.; Pacyna, J.M.; Steenhuisen, F.; Wilson, S. Atmos. Environ. 2006, 40, 4048-4063.
- (8) Brosset, C. Water Air Soil Pollut. 1987, 34, 145–166.
- (9) Iverfeldt, Å. Water Air Soil Pollut. 1991, 56, 251–265.
- (10) Petersen, G.; Iverfeldt, Å.; Munthe, J. Atmos. Environ. 1995, 29, 47-67.
- (11) Wängberg, I.; Munthe, J.; Pirrone, N.; Iverfeldt, Å.; Bahlman, E.; Costa, P.; Ebinghaus, R.; Feng, X.; Ferrara, R.; Gårdfeldt, K.; Kock, H.; Lanzillotta, E.; Mamane, Y.; Mas, F.; Melamed, E.; Osnat, Y.; Prestbo, E.; Sommar, J.; Schmolke, S.; Spain, G.; Sprovieri, F.; Tuncel, G. *Atmos. Environ.* **2001**, *35*, 3019–3025.
- (12) Seigneur, C.; Vijayaraghavan, K.; Lohman, K.; Karamchandani, P.; Scott, C. Environ. Sci. Technol. 2004, 38, 555–569.
- (13) Travnikov, O. Atmos. Environ. 2005, 39, 7541–7548.
- (14) Cooney, C.M. Environ. Sci. Technol. 2005, 39, 232A-233A.
- (15) US EIA. Annual Energy Outlook, 2007. United States Energy Information Administration Website. http://www.eia.doe.gov/oiaf/aeo/ (accessed February 16, 2010).
- (16) NACAA. State/Local Mercury/Toxics Programs for Utilities, November 5, 2009. National Association of Clean Air Agencies Website. http://www.4cleanair.org/ (accessed February 16, 2010).
- (17) CCME. Canada-Wide Standards for Mercury Emissions from Coal-Fired Electric Power Generating Plants, October 11, 2006. Canadian Council of Ministers of the Environment Website. http://www.ccme.ca/ourwork/air.html (accessed February 16, 2010).
- (18) Valupadas, P. Fuel Process. Technol. 2009, 90, 1339-1342.
- (19) Díaz-Somoano, M.; Unterberger, S.; Hein, K.R.G. Fuel Process. Technol. 2007, 88, 259-263.
- (20) Glodek, A.; Pacyna, J.M. Atmos. Environ. 2009, 43, 5668-5673.
- (21) Moser, R.E. Power. 2006, 150, 40-49.
- (22) Kisamori, S.; Mochida, I.; Fujitsu, H. Langmuir 1994, 10, 1241-1245.
- (23) Muñiz, J.; Herrero, J.E.; Fuertes, A.B. Appl. Catal., B. 1998, 18, 171-179.
- (24) Mochida, I.; Korai, Y.; Shirahama, M.; Kawano, S.; Hada, T.; Seo, Y.; Yoshikawa, M.; Yasutake, A. Carbon 2000, 38, 227–239.
- (25) Jarvis, J.; Meserole, F. Power Eng. 2008, 112, 54-60.

- (26) Sjostrom, S.; Dillon, M.; Donnelly, B.; Bustard, J.; Filippelli, G.; Glesmann, R.; Orscheln, T.; Wahlert, S.; Chang, R.; O'Palko, A. Fuel Process. Technol. 2009, 90, 1419–1423.
- (27) Feeley III, T.J.; Jones, A.P.; Brickett, L.A.; O'Palko, B.A.; Miller, C.E.; Murphy, J.T. Fuel Process. Technol. 2009, 90, 1388–1391.
- (28) Presto, A.A.; Granite, E.J. Environ. Sci. Technol. 2007, 41, 6579-6584.
- (29) Presto, A.A.; Granite, E.J.; Karash, A. Ind. Eng. Chem. Res. 2007, 46, 8273-8276.
- (30) Habashi, F. Environ. Sci. Technol. 1978, 12, 1372-1376.
- (31) Ohtsuka, K. Acid-containing activated carbon for adsorbing mercury from liquid hydrocarbons. US Patent 5,891,324, 1999.
- (32) Werner, M.; Heschel, W.; Wirling, J. In Enhanced Adsorption of Elemental Mercury by Sulfurized Activated Lignite HOK[®], Presented at the 23rd Annual International Pittsburgh Coal Conference, Pittsburgh, PA, USA, September 25–28, 2006.
- (33) Uddin, Md.A.; Yamada, T.; Ochiai, R.; Sasaoka, E.; Wu, S. Energy Fuels 2008, 22, 2284–2289.
- (34) Gretta, W.J.; Wu, S.; Kikkawa, H. Power Eng. 2009, 113, 50–55.
- (35) Hall, B.; Schager, P.; Lindqvist, O. Water Air Soil Pollut. 1991, 56, 3-14.
- (36) Xie, Y.; Xie. W.; Liu, K.; Dicken, L.; Pan, W.-P.; Riley, J.T. Energy Fuels 2000, 14, 597-602.
- (37) Lindbauer, R.L.; Wurst, F.; Prey, T. Chemosphere 1992, 25, 1409-1414.
- (38) Raghunathan, K.; Gullett, B.K. Environ. Sci. Technol. 1996, 30, 1827-1834.
- (39) Sterling, R.; Qiu, J.; Helble, J.J. Prepr. Pap.-Am. Chem. Soc., Div. Fuel Chem. 2004, 49, 277–278.
- (40) Zhou, J.; Luo, Z.; Hu, C.; Cen, K. Energy Fuels 2007, 21, 491-495.
- (41) Zhao, Y.; Mann, M.; Olson, E.S.; Pavlish, J.H.; Dunham, G.E. J. Air Waste Manage. Assoc. 2006, 56, 628-635.
- (42) Agarwal, H.; Stenger, H.G.; Wu, S.; Fan, Z. Energy Fuels. 2006, 20, 1068–1075.
- (43) Krishnakumar, B.; Helble, J.J. Environ. Sci. Technol. 2007, 41, 7870–7875.
- (44) Qiu, J.; Sterling, R.; Helble, J.J. Experimental and Modeling Study of Mercury Oxidation Under Simulated Post-Coal Combustion Conditions, Presented at the 5th International Symposium on Coal Combustion, Nanjing, China, November 23–26, 2003.
- (45) Ko, B.K.; Byun, Y.; Cho, M.; Namkung, W.; Hamilton, I.P.; Shin, D.N.; Koh, D.J.; Kim, K.T. Main Group Chem. 2008, 7, 191–204.
- (46) McLarnon, C.R.; Granite, E.J.; Pennline, H.W. Fuel Process. Technol. 2005, 87, 85–89.
- (47) Zacharewski, T.R.; Cherniak, E.A.; Schroeder, W.H. Atmos. Environ. 1987, 21, 2327-2332.
- (48) Laudal, D.L.; Brown, T.D.; Nott, B.R. Fuel Process Technol. 2000, 65–66, 157–165.
- (49) Norton, G.A.; Yang, H.; Brown, R.C.; Laudal, D.L.; Dunham, G.E.; Erjavec, J. Fuel. 2003, 82, 107-116.
- (50) Kellie, S.; Cao, Y.; Duan, Y.; Li, L.; Chu, P.; Mehta, A.; Carty, R.; Riley, J.T.; Pan, W.-P. *Energy Fuels* **2005**, *19*, 800–806.
- (51) Frandsen, F.; Dam-Johansen, K.; Rasmussen, P. Prog. Energy Combust. Sci. 1994, 20, 115–138.
- (52) Cao, Y.; Duan, Y.; Kellie, S.; Li, L.; Xu, W.; Riley, J.T.; Pan, W.-P. Energy Fuels 2005, 19, 842–854.
- (53) Yang, X.; Zhuo, Y.; Duan, Y.; Chen, L.; Yang, L.; Zhang, L.; Jiang, Y.; Xu, X. Korean J. Chem. Eng. 2007, 24, 711–715.
- (54) Wang, Y.; Duan, Y.; Yang, L.; Zhao, C.; Shen, X.; Zhang, M.; Zhuo, Y.; Chen, C. Fuel Process. Technol. 2009, 90, 643–651.
- (55) Kilgroe, J.; Senior, C. Fundamental Science and Engineering of Mercury Control in Coal-fired Power Plants, Presented at Air Quality IV: International Conference on Mercury, Trace Elements, and Particulate Matter, Arlington, VA, USA, September 22–24, 2003.
- (56) Lee, C.W.; Srivastava, R.K.; Ghorishi, S.B.; Karwowski, J.; Hastings, T.W.; Hirschi, J.C. J. Air & Waste Manage. Assoc. 2006, 56, 643–649.
- (57) Zhuang, Y.; Laumb, J.; Liggett, R.; Holmes, M.; Pavlish, J. Fuel Process. Technol. 2007, 88, 929–934.
- (58) Presto, A.A.; Granite, E.J.; Karash, A.; Hargis, R.A.; O'Dowd, W.J.; Pennline, H.W. Energy Fuels 2006, 20, 1941–1945.
- (59) Presto, A.A.; Granite, E.J. Environ. Sci. Technol. 2006, 40, 5601–5609.
- (60) Presto, A.A.; Granite, E.J. Platinum Met. Rev. 2008, 52, 144-154.
- (61) Granite, E.J.; King, W.P.; Stanko, D.C.; Pennline, H.W. Main Group Chem. 2008, 7, 227–237.
- (62) Chang, J.C.S.; Ghorishi, S.B. Environ. Sci. Technol. 2003, 37, 5763-5766.
- (63) Beebe, R.A.; Dell, R.M. J. Phys. Chem. 1995, 59, 746-754.
- (64) Davini, P. Carbon 1990, 28, 565–571.
- (65) Daley, M.A.; Mangun, C.L.; DeBarr, J.A.; Riha, S.; Lizzio, A.A.; Donnals, G.L.; Economy, J. Carbon 1997, 35, 411–417.
- (66) Lizzio, A.A.; DeBarr, J.A. Energy Fuels 1997, 11, 284-291.
- (67) Yang, F.H.; Yang, R.T. Carbon 2003, 41, 2149-2158.
- (68) Huggins, F.E.; Yap, N.; Huffman, G.P.; Senior, C.L. Fuel Process. Technol. 2003, 82, 167–196.
- (69) Olson, E.S.; Mibeck, B.A.; Benson, S.A.; Laumb, J.D.; Crocker, C.R.; Dunham, G.E.; Sharma, R.K.; Miller, S.J.; Pavlish, J.H. Prep. Pap. Am. Chem. Soc., Div. Fuel. Chem. 2004, 49, 279–280.
- (70) Olson, E.S.; Laumb, J.D.; Benson, S.A.; Dunham, G.E.; Sharma, R.K.; Miller, S.J.; Pavlish, J.H. Prep. Pap. Am. Chem. Soc., Div. Fuel Chem. 2003, 48, 30–31.
- (71) Laumb, J.D.; Benson, S.A.; Olson, E.A. Fuel Process. Technol. 2004, 85, 577–585.
- (72) Olson, E.S.; Crocker, C.R.; Benson, S.A.; Pavlish, J.H.; Holmes, M.J. J. Air Waste Manage. Assoc. 2005, 55, 747–755.
- (73) Ghorishi, B.; Gullett, B.K. Waste Manage. Res. 1998, 16, 582-593.

- (74) Carey, T.R.; Hargrove, Jr., O.W.; Richardson, C.F.; Chang, R.; Meserole, F.B. J. Air Waste Manage. Assoc. 1998, 48, 1166–1174.
- (75) Eswaran, S.; Stenger, H.G.; Fan, Z. Energy Fuels. 2007, 21, 852–857.
- (76) Yan, R.; Ng, Y.L.; Liang, D.T.; Lim, C.S.; Tay, J.H. Energy Fuels. 2003, 17, 1528–1535.
- (77) Granite, E.J.; Presto, A.A. Novel Sorbents for Removal of Mercury from Flue Gas, Presented at the 23rd Annual International Pittsburgh Coal Conference, Pittsburgh, PA, USA, September 25–28, 2006.
- (78) Miller, S.J.; Dunham, G.E.; Olson, E.S.; Brown, T.D. Fuel Process Technol. 2000, 65–66, 343–363.
- (79) Mibeck, B.A.F.; Olson, E.S.; Miller, S.J. Fuel Process. Technol. 2009, 90, 1364–1371.
- (80) Liu, W.; Vidic, R.D.; Brown, T.D. Environ. Sci. Technol. 2000, 34, 154-159.
- (81) Granite, E.J.; Pennline, H.W.; Hargis, R.A. Ind. Eng. Chem. Res. 2000, 39, 1020-1029.
- (82) Olson, E.S.; Miller, S.J.; Sharma, R.K.; Dunham, G.E.; Benson, S.A. J. Hazard. Mater. 2000, 74, 61–79.
- (83) Hutson, N.D.; Attwood, B.C.; Scheckel, K.G. Environ. Sci. Technol. 2007, 41, 1747–1752.